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The diffusion process in a random media consisting of two different components is studied by a random
walk model. The latter is described by three parameters, namely, the fraction p of components, the ratio h of
the diffusion coefficients in two components, and the parameter x defining a walker’s jumps at the boundary.
Depending on the values of these parameters the diffusion can be confined, normal, or anomalous �subdiffu-
sion�. The subdiffusion occurs, in particular, for h=0 �trapping model� and for x=0 �excluded volume model�.
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I. INTRODUCTION

Random processes are of critical importance in all fields
of nature �1�. There are two methods of approaching the
problem of random transport. The microscopic method starts
from the law of motion of an individual particle subjected to
a random �and possible deterministic� force. The second,
macroscopic, method treats an ensemble of particles and
deals with such averaged concepts as the diffusion coeffi-
cients. These two methods are connected in the sense that the
averaging over the random force in the microscopic equa-
tions gives the microscopic expression for the phenomeno-
logical coefficients in the macroscopic equations.

The Langevin equation and the random walk method are
two common ways of treating the motion of a single particle.
The Langevin equation is simply Newton’s law for a Brown-
ian particle of mass m subjected to the deterministic viscous
force, −��dx /dt�, and random force ��t�

m
d2x

dt2 + �
dx

dt
= ��t� . �1�

Instead of continuous variables x and t in Eq. �1�, one can
consider the discrete variables in the random walk of a par-
ticle on a periodic lattice with discrete jumps occurring at a
regular discrete rate.

If the random force in Eq. �1� is the Gaussian white noise,
so that

���t�� = 0, ���t���t1�� = 2D��t − t1� , �2�

then the mean-square displacement R2�t���x2− �x�2� in-
creases linearly with t for long times. The same limit law is
obtained for a random walk of a particle executing equiprob-
able transitions to one of the nearest lattice sites in equal
time intervals.

In the macroscopic approach the diffusion coefficient D
enters the diffusion equation for the concentration c�x , t�

�c

�t
= D

�2c

�x2 . �3�

However, it turns out that in many fields of natural sci-
ence �dozens of examples can be found in the comprehensive
reviews �2�, �3�� diffusion is anomalous, namely, for large t

R2�t� � t�, �4�

where the cases with ��1 and ��1 are called subdiffusion
and superdiffusion, respectively, while �=1 corresponds to
normal diffusion.

The question arises as to whether the anomalous diffusion
law �4� can be obtained from the foregoing Langevin equa-
tion or from the random walk approach. To this end, different
generalizations of Eq. �1� have been proposed. These in-
clude: �a� the use of a power law correlation for the random
force instead of Eq. �2�; �b� the consideration of a power law
time dependence of the viscosity ��t� �4�; and �c� the intro-
duction of memory effects by replacing the viscous term in
Eq. �1� by an integral operator with a special form of the
kernel ��t−�� �5�. One can also obtain anomalous diffusion
from a more complicated version of the random walk by
assuming that a particle is able to execute jumps of very
large distances �not only to nearest neighbors� or to wait for
some time on a site before performing the next jump, being
thereby temporarily immobilized. It is intuitively clear that
the motion of a particle will be faster in the first case �super-
diffusion� and slower in the second one �subdiffusion�. It
turns out �3� that the quantitative criteria for the appearance
of anomalous diffusion are the divergence of the averaged
square coordinates and of the averaged waiting time, respec-
tively.

The possibility exists of anomalous diffusion in the ran-
dom walk model not only by changing the rules of jumps of
a particle, but also by changing the structure of the lattice on
which a particle is moving. The best known example is that
of random walks on a fractal self-similar structure �6�. Other
more specific hierarchical structures are nested structures �7�
or those with ultrametric topology �8�. In these cases the
diffusion Eq. �3� has to be modified, e.g., by introducing
fractional derivatives.

Anomalous diffusion occurs also in the so-called trapping
problems, where a particle performs random walks in media
with the overall fraction p covered by traps which are able to
capture a particle �9�. In the trap model a system containing
traps can be considered as a two-component system such that
a particle moves in one of the components and becomes im-
mobile in the second one. In our approach both components
have nonzero diffusion coefficients. Although the diffusion
in each component is normal, the effective diffusion coeffi-
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cients become anomalous due to special anisotropic condi-
tions at the boundary between two components.

II. LATTICE RANDOM WALK MODEL

We have considered �10� the generalized trapping prob-
lem where a lattice consists of two types of regions with
different diffusion coefficients D1 and D2 for the moving
particle with h=D2 /D1. If h=0, the second region becomes a
capturing one, and we come back to the trapping model. As
in the trapping model, we assume that the two regions are
randomly placed, with the overall fractions p and 1− p.
Hence, instead of one parameter p in the trapping problems,
we have now two parameters p and h.

Since we are interested in the asymptotic behavior, the
details at small distances are of no importance, and the ran-
dom medium can be approximated by a lattice of units L0.
There are two types of bonds which, with probabilities p and
1− p, defined by the concentrations of the two components.
Accordingly, there are two characteristic times �1=L0

2 /D1
and �2=L0

2 /D2 with h=�1 /�2.
In addition to two parameters p and h we introduce a third

parameter x which plays a role of transmission factor, that
determines how easily the random walker can pass to another
domain. Although macroscopically the system remains iso-
tropic, we introduce a local anisotropy by defining the direc-
tion of the next jump for a particle which reaches the bound-
ary of two regions. If x is defined as the ratio of the
probability to jump into the second region to that into the
first one, then this parameter, by definition, equals unity for a
locally isotropic medium, and equals zero when one of the
components of the medium is completely nonpenetrable �ex-
cluded volume model�.

The aim of this article is to show that the two-component
disordered medium provides another microscopic model for
anomalous diffusion. It turns out that there are at least two
situations in which subdiffusion can take place. The first one
corresponds to the excluded volume model with x=0, and
the second one is the trapping model with h=0. These two
models of random walks will be analyzed below. One can
obtain anomalous diffusion in a more general case as well,
by introducing correlations between successive jumps in the
original lattice, but we leave this more complicated case for
future investigations.

III. SCALING TRANSFORMATION

A. Original lattice

Our scaling analysis is quite similar to the Migdal-
Kadanoff renormalization scheme used in the theory of criti-
cal phenomena �11�. However, we do not use this approach
to calculate the exact values of the critical indices �for which
there are more accurate methods�, but rather to derive the
very existence of the anomalous behavior of the diffusion
coefficient.

To illustrate the scaling procedure let us consider the tran-
sition from the one-unit trajectories of random walks to the
two-unit ones. As is shown in Fig. 1, there are three possible
ways of continuation to the second jump after performing

one of the 2d possible first jumps, where d is the dimension
of space. One can continue in the same direction �Fig. 1�a��,
or go back �Fig. 1�b�� or, finally, go in one of �2d−2� per-
pendicular directions �Fig. 1�c��. The total number of pos-
sible two-unit jumps is 2d+2d+2d�2d−2�=4d2. On the
other hand, the distances covered are 2L0, zero, and 	2L0,

respectively. Therefore, the averaged square distance L̃2 will

be �2d�4L0
2�+2d�0+2d�2d−2��2L0

2�� /4d2=2L0
2, and L̃

=	2L0 independently of the dimension of space.
The presence of local anisotropy of particle jumps leads

to the different probabilities to perform one step of random
walk on bonds of the first or of the second types being

P0 =
p0

p0 + x0�1 − p0�
, 1 − P0 =

x0�1 − p0�
p0 + x0�1 − p0�

. �5�

Therefore, for the one-bond trajectories of random walks
the mean square displacement independently of the time of
the walk is

R0
2 = P0L0

2 + �1 − P0�L0
2 � �R2�01 + �R2�02. �6�

But the mean square displacement for time �1 �the diffu-
sive mean square displacement� is

Rd
2 = P0

L0
2

�1
�1 + �1 − P0�

L0
2

�2
�1

= P0L0
2 + �1 − P0�hL0

2

� �Rd
2�01 + �Rd

2�02, �7�

and the mean diffusion coefficient D̄0 is

D̄0 = P0D1 + �1 − P0�D2 � D01 + D02. �8�

Here and in the following we denote all parameters for the
initial lattice by subindex zero.

Taking into account the fact that

x0 = 
 p0

1 − p0
� �R2�02

�R2�01

, �9�

h0 =
p0

x0�1 − p0�
�Rd

2�02

�Rd
2�01

=
�R2�01

�R2�02

�Rd
2�02

�Rd
2�01

=
�R2�01

�R2�02

D02

D01
,

we can describe the system by Eqs. �6�, �7�, �8�, and �9�
which define the mean square displacement R0

2, the mean
square displacement for time �1, the mean diffusion coeffi-

cient D̄0, and the parameters x0 and p0. In the next section we

find these parameters �R1
2 , D̄1 ,x1 , p1� for an enlarged lattice.

FIG. 1. The possible two-unit trajectories.
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B. Two-unit lattice

For the enlarged two-unit lattice �two bonds of the origi-
nal lattice�, there are three types of new bonds shown in Fig.
1, where each one of them may contain two units of the first
or of the second types and mixed bonds containing one unit
of each type. While the new bonds of the first two groups
clearly belong to the first and the second types, respectively,
the new bonds of the third group have to be distributed
among the bonds of two types in some proportion, since the
enlarged lattices, as an initial one, has to contain only two
types of bonds. The fact that each type of enlarged lattice
bond contains the mixed bonds of the initial lattice results in
the appearance of some correlation in bond location even if
the initial bond location was non-correlated. So, we have to
introduce the conventional probabilities for the second bonds
in the two-unit trajectories. If the first bond is of the first
type, let the conventional probabilities for the second bond
Q�p ,x� and Q�1− p ,x� belong to the same or of the other
type, respectively.

1. Mean square displacement

Let us illustrate the calculation of the mean square dis-
placement by the example of a two-dimensional lattice of
bond L0, and an enlarged lattice composed of two-unit bonds
of the original lattice. Of the three possible two-unit bonds
shown in Fig. 1 only those shown in Figs. 1�a� and 1�c�
contribute to the mean square displacement.

All possible two-unit bonds are shown in Fig. 2, where
the bonds of the first and second types are depicted by solid
and dotted lines, respectively, and the first step being per-
formed in the horizontal direction on the bond of the first
type with the probability P0 �the bond coming from the left
in Fig. 2�. The next step in the same direction can be either
on the bond of the first type with conventional probability
P0Q�p0 ,x0� �Figs. 2�a�–2�d�� or on the bond of the second
type with probability P0�1−Q�p0 ,x0�� �Figs. 2�e�–2�h��. In
both cases the vertical bonds will be of the first type with
probability Q�p0 ,x0�2 �Figs. 2�a�, 2�e��, or of the second type
with probability �1−Q�p0 ,x0��2 �Figs. 2�b�, 2�f��, or of dif-
ferent types with probability Q�p0 ,x0��1−Q�p0 ,x0�� �Figs.
2�c�–2�d�, 2�g�–2�h��. The overall contribution to the mean
square displacement on a distance 	2L0 will be

RI
2 = P0Q�p0,x0��Q�p0,x0�2 + 2Q�p0,x0��1 − Q�p0,x0��

�
 4 − 1

4 − 1 + x0
+

x0

4 − 1 + x0
�

+ �1 − Q�p0,x0��2

�
 4 − 2

4 − 2 + 2x0
+

2x0

4 − 2 + 2x0
�
2L0

2

+ P0�1 − Q�p0,x0��

��Q�p0,x0�2
 4 − 2

4 − 1 + x0
+

2x0

4 − 1 + x0
�

+ 2Q�p0,x0��1 − Q�p0,x0��
 4 − 3

4 − 2 + 2x0
+

3x0

4 − 2 + 2x0
�

+ �1 − Q�p0,x0��2
 4 − 4

4 − 3 + 3x0
+

4x0

4 − 3 + 3x0
�
2L0

2.

�10�

Additional factors in Eq. �10� containing x0, take into ac-
count the fact that each connection between bonds of differ-
ent types brings an additional factor x0. The form of these
terms depends on the type of the bonds of the first type �n1�
and the second one �n2� into which the particle can pass,
which gives the factors n1 / �n1+x0n2� and x0n2 / �n1+x0n2�.

Equation �10� can be rewritten in the following form:

RI
2 = P0�Q�p0,x0�F1�p0,x0� + x0�1 − Q�p0,x0��F2�p0,x0��2L0

2,

�11�

where

F1�p0,x0� = 1 + �1 − x0��2Q�p0,x0��1 − Q�p0,x0��
4 − 1 + x0

+
2�1 − Q�p0,x0��2

4 − 2 + 2x0

 �12�

and

F2�p0,x0� = 1 + �1 − x0��Q�p0,x0�2

4 − 1 + x0

+
4Q�p0,x0��1 − Q�p0,x0��

4 − 2 + 2x0
+

3�1 − Q�p0,x0��2

4 − 3 + 3x0

 .

�13�

For an arbitrary number of dimensions d, Eq. �11� remains
the same, but the functions F1�p0 ,x0� and F2�p0 ,x0� have the
following form:

F1�p0,x0� = 1 + �1 − x0� �
k=1

2d−2
kC2d−2

k

2d − k + kx0

�Q�p0,x0�2d−2−k�1 − Q�p0,x0��k, �14�

F2�p0,x0� = 1 + �1 − x0� �
k=0

2d−2
�k + 1�C2d−2

k

2d − �k + 1� + �k + 1�x0

�Q�p0,x0�2d−2−k�1 − Q�p0,x0��k, �15�

where Cn
k are the binomial coefficients. For d=2, Eqs. �14�

and �15� reduce to Eqs. �12� and �13�.

FIG. 2. The bonds of two-unit trajectories.
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So far we considered the case where the first step was on
the bond of the first type. Repeating the same calculation for
the first bond of the second type, one gets for the contribu-
tion to the mean squared displacement,

RII
2 = �1 − P0���1 − Q�1 − p0,x0��F̃1�p0,x0�

+ x0Q�1 − p0,x0�F̃2�p0,x0��2L0
2, �16�

where

F̃1�p0,x0� = 1 + �1 − x0� �
k=0

2d−2
�k + 1�C2d−2

k

2d − �k + 1� + �k + 1�x0

��1 − Q�1 − p0,x0��2d−2−kQ�1 − p0,x0�k,

�17�

and

F̃2�p0,x0� = 1 + �1 − x0� �
k=0

2d−2
�k + 2�C2d−2

k

2d − �k + 2� + �k + 2�x0

��1 − Q�1 − p0,x0��2d−2−kQ�1 − p0,x0�k.

�18�

Combining now Eqs. �11� and �16�, one gets the final expres-
sion for the mean squared displacement of the enlarged lat-
tice

R1
2 = �P0Q�p0,x0�F1�p0,x0�

+ x0�1 − P0�Q�1 − p0,x0�F̃2�p0,x0�

+ x0P0�1 − Q�p0,x0��F2�p0,x0�

+ �1 − P0��1 − Q�1 − p0,x0��F̃1�p0,x0�� . �19�

2. Diffusion coefficient

Equation �19� contains three types of the two-units bond,
namely, the first term in Eq. �19� corresponds to the two-unit
bonds of the first type, the second term describes those of the
second type, and the last two terms represent the mixed two-
unit bonds composed from the single bonds of two different
types. However, our original lattice contains only bonds of
two types, and this main property must remain unchanged
during the scaling transformations. Therefore, let us split the
last two terms in Eq. �19� into two parts in ratio 	�x0 , p0 ,h0�
and 1−	�x0 , p0 ,h0� belonging to the first and to the second
type, respectively. Then the mean square displacement of the
enlarged lattice �19� can be rewritten as

R1
2 = R11

2 + R12
2 , �20�

where

R11
2 = �P0Q�p0,x0�F1�p0,x0� + †x0P0�1 − Q�p0,x0��F2�p0,x0�

+ �1 − P0��1 − Q�1 − p0,x0��F̃1�p0,x0�‡

�	�p0,h0,x0��2L0
2, �21�

and

R12
2 = �x0�1 − P0�Q�1 − p0,x0�F̃2�p0,x0�

+ †x0P0�1 − Q�p0,x0��F2�p0,x0�

+ �1 − P0��1 − Q�1 − p0,x0��F̃1�p0,x0�‡

��1 − 	�p0,h0,x0���2L0
2. �22�

In order to find the mean square displacement for time 2�1
�the diffusion displacement in an enlarge lattice� one has to
take into account that the characteristic time of a walk along
the enlarged bond of the mixed type is �1+�2, and the char-
acteristic time of a walk along the enlarged bond of the sec-
ond type is 2�2. Therefore, one has to change the second
terms in Eq. �21� and the first term in Eq. �22� in the ratio
2�1 / ��1+�2�=2h / �1+h�, as well as the second terms in Eq.
�22� in the ratio 2�1 /2�2=h.

Then, one gets for the diffusion coefficient

D1 = D11 + D12, �23�

where

D11 = �P0Q�p0,x0�F1�p0,x0� + �x0P0�1 − Q�p0,x0��F2�p0,x0�

+ �1 − P0��1 − Q�1 − p0,x0��F̃1�p0,x0��

�
2h0	�p0,h0,x0�

1 + h0

D1 �24�

and

D12 = �x0�1 − P0�Q�1 − p0,x0�F̃2�p0,x0�

+ �x0P0�1 − Q�p0,x0��F2�p0,x0�

+ �1 − P0��1 − Q�1 − p0,x0��F̃1�p0,x0��

�
2�1 − 	�p0,h0,x0��

1 + h0

D2. �25�

3. Two types of enlarged bonds

The ratio of two types of bond changes during the scaling
transformations reaching, after macroscopic average, one of
the fix point values, p=0, p=1, or p=1/2. The ratio of the
two-unit bonds of the first type p1 is composed of those
consisting two single bonds of the first type with probability
P0Q�p0�, and those that appeared �in ratio 	�p0 ,x0 ,h0�� from
the mixed bonds, i.e.,

P1 = P0Q�p0,x0� + �P0�1 − Q�p0,x0��

+ �1 − P0��1 − Q�1 − p0,x0���	�p0,h0,x0� . �26�

C. Connection with percolation theory

In order to find the function 	�p0 ,x0 ,h0�, one can com-
pare our diffusion problem with that of the percolation
theory. There is no different interaction of a walking particle
with two types of bonds in the percolation theory, i.e., x0
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=1. There are two types of bonds in a percolation problem
�say, those with good and bad conductivity�, and in the scal-
ing transformation in the percolation problem �12�, one also
divides the mixed bonds into two types in ratio 
�p0� and
1−
�p0�. Then, the averaging over the displacement �at spe-
cific time� in the percolation problem is equivalent to the
average over times �at specific displacement� in our problem

D̄ = 	�p0,h0,x0 = 1�
L0

2

�1
+ �1 − 	�p0,h0,x0 = 1��

L0
2

�2
=

L0
2

�̄
,

�27�

where the mean-time �̄ is �̄=
�p0��1+ �1−
�p0���2.
It follows from Eq. �27� that

	�p0,h0,x0, = 1� =

�p0�h0


�p0�h0 + �1 − 
�p0��
. �28�

Assume that for x0�1 the mean-time �̄ can be general-
ized to the following form:

�̄ =
�1f1�p,h,x� + �2f2�p,h,x�

f1�p,h,x� + f2�p,h,x�
=

�1 + �2F�p,h,x�
1 + F�p,h,x�

, �29�

where F�p ,h ,x�= f2�p ,h ,x� / f1�p ,h ,x�.
Due to the arbitrary definition of the bonds of the first and

the second type, there are the following symmetry properties
of the function F�p ,h ,x�:

F�1 − p,1/h,1/x� = 1/F�p,h,x� . �30�

By using Eqs. �27�–�29� one easily obtains that for x
=1, F�p ,h ,x=1�= �1−
�p�� /
�p�. In addition, in two ex-
treme cases, x=0 and x=�, the mixing parameter has to be
the same as for the percolation problem, i.e., F�p ,h ,x
=0,��=h�1−
�p�� /
�p�.

The simplest form of the function F�p ,h ,x� which meets
these requirements is

F�p,h,x� =
1 − 
�p�


�p�
hx2 + 2x + h

x2 + 2xh + 1
, �31�

which gives

	�p,h,x� =

�p��x2 + 2xh + 1�h


�p��x2 + 2xh + 1�h + �1 − 
�p���hx2 + 2x + h�
.

�32�

The function 
�p� in the percolation problem defines the
separation of the mixed two units bonds into those of the first
and the second types. To find the form of the function 
�p�
in two dimension, let us consider the bonds shown in Fig. 3.
The type of the new bond ac is determined by the properties
of single bonds ab, bc, cd, and da of the original lattice. If
all four bonds, or three of them �four possibilities with prob-
ability p0

3�1− p0� belong to the first type, then the bond ac of
the enlarged lattice belong to the same type. If, however, two
single bonds belong to the first type and two bonds are of the
second type �six possibilities with probability p0

2�1− p0�2�,
only half of them result in the first type of bond of the en-
larged lattice. Then, the ratio of the bonds of the first type in
the enlarged lattice p1 will be the following function of p0:

p1 = p0
4 + 4p0

3�1 − p0� +
1

2
6p0

2�1 − p0�2

= p0 − p0�1 − p0��1 − 2p0� . �33�

Substituting into Eq. �26� the approximate value of
Q�p� , Q�p�= p, as well as the expression �32� for 	�p ,x
=1,h=1� and comparing the obtained equation with Eq.
�33�, one gets


�p� = p for d = 2. �34�

By similar arguments one can show that in three dimensions


�p� = 0.5�1 − �1 − 4p��1 − 2p��1 − 4p/3�� for d = 3.

�35�

D. Differential form of scaling transformations

Equation �33� defines the discrete transformation from the
original lattice of size L0 to the enlarged lattice of size 	2L0.
One can pass from this discrete transformation to infinitesi-
mal ones, changing thereby the difference equations into the
differential ones. For two dimension, for example, one can
rewrite Eq. �33� in the form

dp�n�
dn

�
p1 − p0

1
= − p�n��1 − p�n���1 − 2p�n�� . �36�

Equation �36� has two stable steady-states p0
*=0 , p1

*=1,
and one unstable steady-state p*=0.5 which corresponds to
the percolation threshold of a system.

One can write the differential form of other equations of
the scaling transformations as well, but we prefer not to do it
in the general case, but rather consider the special cases of
the trapping model �h=0� and of the excluded volume model
�x=0�.

IV. TRAPPING MODEL

The special case of our model is one with D2=0, and
consequently h=0. It means that a walking particle is cap-
tured by the bonds of the second type, and remains immobi-
lized �trapping model�. We restrict ourselves to the simplified
version of our model putting x=1, which corresponds to the

FIG. 3. The initial and enlarged lattices.
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properties of most of the real systems and assumed in the
well-known trapping model �9�. Then, our general formulas
for the scaling transformation are substantially simplified
leading to

P0 = p0, F1 = F2 = 1, 	 = 0, D̄1 = p0Q�p0�D1,

�37�

p1 = P1 = p0Q�p0� .

All relations in Eq. �37� are readily obtained from Eqs.
�5�, �11�–�13�, �23�, �26�, and �32�, respectively by substitut-
ing h=0 and x=1. Here and later on we omit the argument
x=1 in function Q�p ,x�.

From the last equation in Eq. �37� one gets on the nth step
of the scaling transformations

pn+1 − pn = − pn�1 − Q�pn�� . �38�

The standard way of analysis of the scaling transformations
involves the transition from the discrete n transformation
�38� to the continuous dependence on n, i.e., on time of walk
t, dp /dn= �dp /dt��dt /dn�= t�dp /dt�. Then, Eq. �38� becomes

t
dp

dt
= − p�t��1 − Q�p�� . �39�

Due to the traps, the correct asymptotic solution of Eq. �39�
which vanishes at t→�, has the following form:

p�t�
p0

� 
 t

�1
�−�1−Q�p=0��

. �40�

The concentration of the walking particles will decrease
with time due to their capture by the trapping centers. The
rate of this decrease on the nth step dC /dn is proportional to
the overall concentration of the walking particles in the re-
gions in which there are no traps C / p and the probability 1
−Q�p� to meet a trap

dC

dn
� t

dC

dt
= −

�1 − Q�p��
p

C . �41�

Division of Eq. �41� by Eq. �39� gives dC�p� /dp=
−C�p� / p2 with the asymptotic solution for the so-called sur-
vival probability, C�p�t��

C�t� = C0 exp�− A
 t

�1
�1−Q�p=0�� . �42�

One can compare the last equation with the general result
for the survival probability in a d-dimensional trapping sys-
tem obtained by different methods �9,13,14�

C�t� = exp�− A
 t

t0
�d/�d+2�� . �43�

Comparison of Eqs. �42� and �43� shows that

1 − Q�p = 0� =
d

d + 2
. �44�

From the two last equations in Eq. �37�, one gets for the
diffusion coefficient

dD1

dp
=

D1

p
, �45�

which gives D1�t� /D0= p�t� / p0, and using Eq. �40� we finally
obtain

R2�t� = D1�t�t � t2/�d+2�. �46�

Hence, our method shows anomalous �subdiffusive� be-
havior of a system with trapping centers in all dimensions.

V. EXCLUDED VOLUME MODEL

Another limit case that results in an essential simpli-
fication of the equations of scaling transformation is that of
the excluded volume, i.e., the bonds of the second type are
completely impenetrable for a walking particle. Then, all
the properties of the second type of bonds cannot influence
the diffusion of a walking particle. Indeed, in our formal-
ism the excluded volume corresponds to the special value of
parameter x, namely, x=0. Then, as follows from Eq. �5�,
1− P0=0, which, in turn, means that parameters h and D2
drop out from Eqs. �23�, �26�, and �28�, leading to

D̄1 − D1 = �Q�p0�F1�p0,x0 = 0� − 1�D1, 	 = 
�p� ,
�47�

p1 − p0 = − p0�1 − Q�p0���1 − 2
�p0�� .

From three parameters of our theory, p, h, and x, only
parameter p is imporant for the considered case of the ex-
cluded volume since h becomes nonrelevant, and x is fixed
x=0. Accordingly, the symmetry property p�1− p can be
expressed as

p�1 − Q�p�� = �1 − p��1 − Q�1 − p�� . �48�

Since obviously Q�p=1�=1, it follows from Eq. �48� that
Q�p=0�=0 in contrast to the trapping models. As in the pre-
vious section, the argument x=0 in function Q�p ,x� is omit-
ted.

One can transfer the difference equations in Eq. �47� into
differential equations, as was done in Eqs. �38� and �39�,
leading to

t
dD�t�

dt
= − �1 − Q�p���1 − W�p��D�t� ,

t
dp�t�

dt
= − p�t��1 − Q�p���1 − 2
�p�� , �49�

where W�p�=Q�p� /1−Q�p��F1�p0 ,x0=0�−1�=1−1/2d
−1�k=0

2d−2�1−Q�p��k.
Combining the two Eqs. �49�, one obtains

dD

dp
=

D�1 − W�p��
p�1 − 2
�p��

. �50�

Let us consider separately the two- and three-dimensional
cases.

A. Two dimensions

According to Eq. �34�, 
�p�= p for d=2, and the second
equation in Eq. �49� has two stable fixed points p0

*=0 and
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p1
*=1 �since Q�p=1�=1�, and one unstable fix point p*

�0.5 �the exact value of the unstable fixed point p* is not
important for our goals�.

Therefore, for t→�, one gets

p�t� � �p0�1 − 2p0�−1/	�t/�1�−1, p0 � 0.5,

0.5, p0 = 0.5,

1 − �1 − p0��p0�2p0 − 1�−1/	�t/�1�−1��, p0 � 0.5,
�

�51�

where 	=1−Q�p=0.5��0, �=dQ�p� /dp�p=1.
Using Eq. �51� and the two-dimensional form of the func-

tion W�p� , W�p�=1−1/3��1−Q�p��2+ �1−Q�p��+1�, one
can easily find from Eq. �50� the diffusion coefficient D and
the mean square displacement R2=Dt which gives

R2�t� = D�t�t � ��1 − 2p0�−
D1�1, p0 � 0.5,
1
2D1�1�t/�1�	
, p0 = 0.5,

�2p0 − 1��1/	�−
D1t , p0 � 0.5.
� �52�

here 
=	−1− 1
3 �	2+	+1��0, 	
�1.

This result means that if the fraction of the excluded vol-
ume in a system is too high �1− p0�0.5�, the diffusion is
confined so that a walking particle remains in a restricted
region. When passing from the confined diffusion at p0
�0.5 to the normal diffusion at p0�0.5, the localization
radius is increasing as �1−2p0�−
 and at a special point p0

=0.5 �percolation threshold in two dimension� the diffusion
is anomalous �subdiffusion�.

B. Three dimension

Substituting expression �35� for 
�p� in the second
equation in Eq. �49�, one finds that the latter equation
has three stable fixed points: p0

*=0, p*=0.5, and p1
*=1,

and two nonstable fix points: p2
*=0.25 and p3

*=0.75. Taking
into account the three-dimensional form of the func-
tion W�p� , W�p�=1− 1

5 ��1−Q�p��4+ �1−Q�p��3+ �1−Q�p��2

+ �1−Q�p��+1� one finds, analogously Eq. �52�, the follow-
ing asymptotic dependence of the mean square displacement
in three dimension:

R2�t� ��
�1 − 4p0�−3
1D1�1, p0 � 1/4,

D1�1�t/�1��
1, p0 = 1/4,

�4p0 − 1�−3�
1−	
̃/���3 − 4p0�−��2−	
̃/��D1�1�t/�1�	
̃, 1/4 � p0 � 3/4,

D1�1�t/�1��
2, p0 = 3/4,

�4p0 − 3��1/��−
2D1t , p0 � 3/4,
� �53�

here 	=1−Q�p0=0.5�, �=1−Q�p0=0.25�, �=1−Q�p0

=0.75�, 
̃=	−1− 1
5 �	4+	3+	2+	+1��0�	
̃�1� , 
1=�−1

− 1
5 ��4+�3+�2+�+1��0��
1�1� , 
2=�−1− 1

5 �� 4+� 3+� 2

+�+1��0, ��
2�1�.
Thus, for a three-dimensional lattice, just as in the case of

a two-dimensional lattice, the confined diffusion occurs for a
large concentration of the excluded volume �1− p0�0.75�,
while for a low concentration of the excluded volume �1
− p0�0.25� the normal diffusion takes place. However, in
the three-dimensional case these two regions of concentra-
tions are separated not by an isolated point �as p0=0.5 in the
two-dimensional case�, but rather by the region �0.25� p0

�0.75�. In line with this, the anomalous diffusion in three
dimensions occurs in a whole region of concentrations, and
not at the special concentration as it was in the two-
dimensional case.

Note, that the indices introduced in Eqs. �51�–�53� are not
independent. Substituting p=1/4 in Eq. �48�, one finds that
�=� /3. Moreover, the simplest form of function Q�p� satis-
fying the symmetry conditions �48� is

Q�p� = p�1 + a�1 − p�2� . �54�

Then, one has only one independent index in Eqs.
�51�–�53�. The rough estimate of the single unknown index

can be performed under the assumption that in the regime of
confined diffusion �p�0.25� the mean square displacement
R2�t���p− p0�−3
1 is defined by the square of the mean clus-
ter size �2��p− p0�−2� where ��0.8−0.9 near p0=0.25 �15�,
i.e., 
1�0.53−0.6. Then, as follows from the formulas for

1���, ��Q�p0�� and 
̃�	� written after Eq. �53�, ��0.81
−0.79; Q�p=0.25�=1−��0.19−0.21; 	=1−Q�p=0.5�
�0.44−0.47; 
̃�1.9−1.8, and, finally, 	
̃���0.84−0.83.
Hence, for p�0.25

R2�t� � t� � � 0.83 − 0.84, �55�

i.e., the diffusion in this region is anomalous �subdiffusion�.
This result has been checked by numerical simulations.

C. Numerical analysis

We have generated a sample of about 10 000 free random
walks of 1000 steps on a cubic lattice of 350�350�350
sites with periodic boundary conditions. The rules for the
random walks were as follows. At each step the walker may
move with equal probability 1 /6 to any of the six nearest
neighbors of the lattice site he is at. A fraction 1− p of the
bonds is lacking, and when the cast indicates to go to this
direction, the die is cast again without any correlations with
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the previous cast. The results of calculations show that after
1000 steps the asymptotic behavior is certainly reached. The
calculations were performed for p=0.2−0.8, where, accord-
ing to Eq. �53�, the diffusion should be confined, anomalous,
and normal, respectively. The results of the calculations
shown in Figs. 4 and 5 support this prediction. In Fig. 4 we
show the mean square displacements as a function of the
number of steps �time�. Since for p=0.2 a walker is very
restricted in its motion, R2�t� is very small. However, as is
shown in the inset in Fig. 4, the appropriate graph shows
saturation, which denotes confined diffusion. On the other
hand, the plots for p=0.4 and p=0.8 show a diffusion behav-
ior of the form R2�t�� t� with �p=0.8��p=0.4. In order to ar-
rive at a better approximation for index �, the data shown in
Fig. 4 are displayed on a logarithmic plot in Fig. 5. Since the
indices �p=0.8 and �p=0.4 are very close, the inset in Fig. 5
shows that these indices are different, namely, �p=0.8=1 �nor-
mal diffusion�, and �p=0.4=0.86 �subdiffusion�. The agree-
ment between the numerical �p=0.4=0.86 and the theoretical
results �55� �p=0.4=0.84 seems to be quite reasonable. It must
be emphasized, that due to the approximations made, both
the renormalization group theoretical estimates and the nu-
merical calculations on the finite sample are quite approxi-
mate. However, our contention that subdiffusion occurs for
0.25� p�0.75 seems to be correct. In order to show the

transition from the confined diffusion at p�0.25 to the nor-
mal diffusion ��=1� for p�0.75, we bring in Table I the
change of index � with p, deduced from the numerical cal-
culations.

VI. CONCLUSION

A random walk on the lattice forms the microscopic basis
for the diffusive process. Brownian motion is the well-
known phenomenon leading to normal diffusion, when the
mean-square displacement increases linearly with time for
long times. The nonlinearity of this dependence defines
anomalous diffusion. There are various ways of providing a
microscopic explanation of anomalous diffusion by changing
the rules of jumps of a walking particle. Here we use a dif-
ferent approach, changing the structure of the lattice on
which a particle is moving. We assume that a disordered
medium consists of two randomly distributed components
with different diffusion coefficients. In the lattice description,
this means that there are two types of bonds randomly dis-
tributed over the lattice, and a random walker interacts dif-
ferently with these two components. We describe a system
by three parameters which define the fractions p and 1− p of
the two components, the ratio h of time scales �or diffusion
coefficients� for a random walker on each of the two com-
ponents, and parameter x which describes a local anisotropy,
being the ratio of the probability to jump into second region
to that into first region.

Our aim was to find the asymptotic value of the mean
square displacement and the effective diffusion coefficient of
a two-component random medium when the diffusion is
anomalous. To this end, we apply the idea of scaling widely
used in the theory of phase transitions. The scaling invari-
ance means that the overall properties of a system, such as
the diffusion coefficient, does not depend on the details at
small distances, so that the functional dependence on our
parameters will be the same for the original lattice and a
series of enlarged lattices. We found the scaling transforma-
tions which give the connection between parameters in the
original and enlarged lattice. These difference equations are
transformed into differential equations with a set of fixed
points which define the behavior of a system being dis-
cussed.

Note, that our approach does not deal with critical phe-
nomena. Anomalous diffusion can appear in the latter case as
well �in the framework of percolation theory such calcula-
tions have been performed, for example, in Ref. �16��, but
there it is always restricted to the close vicinity of the critical
point. In our case anomalous diffusion occurs in a wide re-
gion of values of the parameter p between two percolation
points p0�0.25 and 0.75. In some sense, the situation is

FIG. 4. The mean square displacement R2�t� as a function of the
number of steps �time� for different fractions of bonds: p=0.2 �con-
fined diffusion�, p=0.3, p=0.4, p=0.5, p=0.6, p=0.7 �anomalous
diffusion�, and p=0.8 �normal diffusion�. The inset clearly shows
the confined diffusion for p=0.2.

FIG. 5. The same data as in Fig. 4 for two fractions of bonds:
p=0.2 �confined diffusion�, p=0.4 �anomalous diffusion�, and p
=0.8 �normal diffusion� shown in the logarithmic plot. Since the
indices �p=0.8 and �p=0.4 are very close, the inset shows that these
indices are different, namely, �p=0.8=1 �normal diffusion�, and
�p=0.4=0.86 �subdiffusion�.

TABLE I. Index � defining the anomalous diffusion �R2�t�
� t�� for different fractions of bonds p.

p 0.2 0.3 0.4 0.5 0.6 0.7 0.8

� 0 0.84 0.86 0.94 0.96 0.99 1
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similar to self-organized criticality in nonequilibrium sys-
tems �17�, where the “criticality” occurs in a wide region of
parameter values and not just near the critical point.

The appearance of anomalous diffusion is not surprising
since in our model the motion of a walker is essentially hin-
dered and leads to subdiffusion like in similar problems of
diffusion on fractals, self-avoiding walks, long-range corre-
lated walks, porous media, etc.

The general equations have been analyzed for the two
limit cases of trapping systems �h=0�, and the excluded vol-
ume system �x=0�. In the former case anomalous diffusion
occurs in all dimensions. For the latter case, in two dimen-

sion anomalous diffusion takes place only for a special value
of the parameter p while in three dimension anomalous dif-
fusion holds in the whole region of this parameter.

For arbitrary values of the parameters the analysis is
much more cumbersome. Moreover, one can obtain anoma-
lous diffusion by introducing correlations between succes-
sive jumps in the original lattice. Another way of generaliza-
tion of our model is to take into account an existence of
energy barriers on the boundary between regions of different
types, which will define the probabilities of the appropriate
jumps.

�1� N. G. van Kampen, Stochastic Processes in Physics and
Chemistry �North-Holland, Amsterdam, 1992�.

�2� J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 �1990�.
�3� R. Meltzer and J. Klafter, Phys. Rep. 339, 1 �2000�.
�4� F. Lillo and R. N. Mantegna, Phys. Rev. E 61, R4675 �2000�.
�5� K. G. Wang and M. Tokuyama, Physica A 265, 341 �1999�.
�6� S. Havlin and D. Ben Avrahan, Adv. Phys. 36, 695 �1987�.
�7� F. Wegner and S. Grossman, Z. Phys. B: Condens. Matter 59,

197 �1985�.
�8� B. A Huberman and M. Kerszberg, J. Phys. A 18, L331

�1985�.
�9� G. H. Weiss, Aspects and Applications of the Random Walk

�North-Holland, Amsterdam, 1994�.
�10� A. E. Arinstein and A. P. Moroz, Sov. Phys. JETP 75, 117

�1992�; 75, 1033 �1992�; JETP 79, 175 �1994�.
�11� L. Kadanoff, Statistical Physics �World Scientific, Singapore,

2002�.
�12� S. Kirpatrick, Rev. Mod. Phys. 45, 574 �1973�.
�13� V. Ya. Balagurov and V. T. Vaks, Sov. Phys. JETP 38, 968

�1973�.
�14� M. Doncker and S. R. S. Varadhan, Commun. Pure Appl.

Math. 32, 271 �1979�.
�15� A. L. Efros, Physics and Geometry of Disorder �Nauka, Mos-

cow, 1982� �in Russian�.
�16� J. Straley, J. Phys. C 13, 2991 �1980�; Phys. Rev. B 41, 9340

�1990�.
�17� P. Bak, How Nature Works: The Science of Self-Organized

Criticality �Springer, Berlin, 1996�.

RANDOM WALKS AND ANOMALOUS DIFFUSION IN … PHYSICAL REVIEW E 72, 021104 �2005�

021104-9


